In vitro activity of omadacycline against pathogens isolated from Mainland China during 2017–2018

Dong Dong, Yonggui Zheng, Qingqing Chen, Yan Guo, Yang Yang, Shi Wu, Demei Zhu, Daniel Deng, Patricia A. Bradford, Harald Reinhart, et

ONLINE

European Journal of Clinical Microbiology & Infectious Diseases

ISSN 0934-9723

Eur J Clin Microbiol Infect Dis DOI 10.1007/s10096-020-03877-w

Your article is protected by copyright and all rights are held exclusively by Springer-Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

European Journal of Clinical Microbiology & Infectious Diseases https://doi.org/10.1007/s10096-020-03877-w

ORIGINAL ARTICLE

In vitro activity of omadacycline against pathogens isolated from Mainland China during 2017–2018

Dong Dong ^{1,2} · Yonggui Zheng ^{1,2} · Qingqing Chen ³ · Yan Guo ^{1,2} · Yang Yang ^{1,2} · Shi Wu ^{1,2} · Demei Zhu ^{1,2} · Daniel Deng ⁴ · Patricia A. Bradford ⁵ · Harald Reinhart ⁴ · Fupin Hu ^{1,2}

Received: 12 February 2020 / Accepted: 23 March 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Antibiotic resistance of bacterial pathogens isolated in China is a major concern. Omadacycline is a novel tetracycline derivative that has been approved for use in skin infections and community-acquired pneumonia. This study was conducted to determine the in vitro activity of omadacycline against a large collection of patient isolate medical centers across Mainland China. A total of 1041 recent clinical isolates are obtained from patients hospitalized in 29 provinces and municipalities across China. The in vitro activity of omadacycline and comparator agents was assessed using the microbroth dilution methodology. Omadacycline was active against methicillin-susceptible and -resistant *Staphylococcus aureus* with MIC₉₀ values of 0.25 and 1 mg/L, respectively. All isolates of *Enterococcus faecalis* and *Enterococcus faecium*, including vancomycin-resistant isolates, were inhibited by \leq 0.25 mg/L of omadacycline. It was active against *Streptococcus pneumoniae* irrespective of susceptibility to penicillin or macrolides (MIC₉₀ =0.12 mg/L). The minimum inhibitory concentration (MIC) distribution of omadacycline was nearly identical against (extended-spectrum beta-lactamases) ESBL-positive, ESBL-negative, and carbapenemase-producing *Escherichia coli* (MIC₉₀ = 4 mg/L). Omadacycline also showed good activity against *Acinetobacter baumannii*, inhibiting all isolates at \leq 8 mg/L. Against *Hemophilus influenzae* and *Moraxella catarrhalis*, the MICs of omadacycline were low and not influenced by the presence of β -lactamase. Overall, the activity of omadacycline was very good against isolates commonly associated with skin infections and pneumonia, and the susceptibility of Chinese isolates was similar to that reported for these pathogens from large surveillance studies outside China. This suggests that omadacycline could be an option for treatment of these infections in Chinese patients.

Keywords Omadacycline · In vitro activity · MRSA · ESBL

Introduction

Omadacycline is a novel semisynthetic derivative of minocycline known as an aminomethylcycline [1]. Like

Dong Dong and Yonggui Zheng contributed equally to this work.

- Fupin Hu hufupin@fudan.edu.cn
- ¹ Institute of Antibiotics, Huashan Hospital, Fudan University, 12 M. Wulumuqi Rd., Shanghai 200040, People's Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
- ³ Laboratory Medicine, First Hospital of Quanzhou city, QuanZhou, Fujian, China
- ⁴ Zai Laboratory Inc, Shanghai, China

Published online: 30 April 2020

Antimicrobial Development Specialists, LLC, Nyack, NY, USA

tetracyclines, omadacycline inhibits bacterial protein synthesis by binding to the aminoacyl-transfer ribonucleic acid (Asite) 30S subunit of the bacterial ribosome [2]. Omadacycline was modified by the C-7 and C-9 positions of the D-ring of minocycline, which resulted for it to overcome common tetracycline-specific resistance mechanisms such as efflux pumps and ribosomal protection, which results in activity against many tetracycline-resistant pathogens [1]. Omadacycline has a broad spectrum of activity that includes Gram-positive and many Gram-negative bacteria, including methicillin-resistant *Staphylococcus aureus*, *Streptococcus pneumoniae*, β-hemolytic streptococci, vancomycin-resistant *Enterococcus* spp., and Enterobacteriaceae as well as anaerobes [3, 4].

The safety and efficacy of omadacycline have been well studied in a series of well-controlled clinical trials. In a study that included an IV to oral switch, omadacycline was non-inferior to linezolid for the treatment of acute bacterial skin and skin

structure infections (ABSSSI) and had similar response rates for patients infected with methicillin-resistant *S. aureus* (MRSA) and methicillin-susceptible *S. aureus* (MSSA) [5]. In another study of ABSSSI that utilized oral treatment only, omadacycline given once daily was found to be non-inferior to linezolid given twice daily [6]. Omadacycline was also studied in the treatment of community-acquired bacterial pneumonia (CABP) in a trial that included an option for oral stepdown after 3 days of IV therapy, where it was found to be non-inferior to moxifloxacin [7].

The in vitro activity of omadacycline has been well studied in isolates collected in the USA and in Europe; however, data against recent isolates from Asia including China are sparse [3, 8, 9]. Therefore, this study was conducted to determine the in vitro activity of omadacycline against a large collection of patient isolates from a geographically diverse group of medical centers in Mainland China.

Materials and methods

Antimicrobial susceptibility tests

Susceptibility testing was performed by using broth microdilution following the recommendations of the Clinical and Laboratory Standards Institute (CLSI) [10]. Drug powders were obtained from the following sources: omadacycline, Zai Laboratory; imipenem, Merck, China; linezolid, Fresenius Kabi Norge AS, Norway; moxifloxacin, Bayer China; tigecycline, Pfizer; amikacin, amoxicillin, ampicillin, azithromycin, cefepime, ceftriaxone, ceftazidime, clavulanic acid, doxycycline, levofloxacin, oxacillin, penicillin, piperacillin, sulfamethoxazole, tazobactam, trimethoprim, and vancomycin, National Institutes of Food and Drug control (Beijing, China). Quality control was conducted with S. aureus ATCC 29213, S. pneumoniae ATCC 49619, Escherichia coli ATCC 25922, and Haemophilus influenzae ATCC 49247 as recommended by the CLSI [11]. Interpretive criteria (breakpoints) assigned by the US Food and Drug Administration (FDA) were applied to both omadacycline and tigecycline (www.fda.gov/drugs/development-resources/ antibacterial-susceptibility-test-interpretive-criteria). Omadacycline has different breakpoints for S. aureus isolated from patients with ABSSSI and CABP. Therefore, for the purpose of this study, the breakpoints for ABSSSI were used to calculate percent susceptibility. CLSI interpretive criteria were applied to all comparator antibiotics with the exception of tigecycline [11]. β-lactamase production in H. influenzae was determined using nitrocefin disk (Becton, Dickinson and Company, USA). The designation of extended-spectrum betalactamases (ESBL) was determined by using CLSI methods confirmatory testing with clavulanate [11]. Identification of carbapenemase genes KPC and NDM was performed by PCR and DNA sequencing as described previously [12].

Bacterial isolates

A total of 1041 bacterial isolates (1 per patient) were collected from patients in 52 hospitals in 29 provinces and municipalities in China from October 2017 to September 2018 (Fig. 1). Overall, 81.7% of the isolates were collected from hospitalized patients and 18.3% were from out-patients or emergency room patients. The isolates were obtained from various infection source: 44.1% of isolates were cultured from sputum or respiratory tract; 11.7% from secretions including wound, ulcer, and vaginal; 8.3% from blood; 7.9% from urine; 7.1% from pus; 1.2% from cerebrospinal fluid; and 19.8% of isolates were cultured from another body site. The genus and species of the isolates were identified in Huashan Hospital by using automated microbial identification systems VITEK 2 Compact (BioMerieux, Marcy-l'Étoile, France) or MALDI-TOF (Biomerieux). In total, 600 Gram-positive and 441 Gram-negative organisms were collected that included S. aureus (N = 200), coagulase-negative Staphylococcus spp. (N = 65), Enterococcus faecalis (N = 22), Enterococcus faecium (N=40), Streptococcus pyogenes (N=80), Streptococcus agalactiae (N = 21), Streptococcus dysgalactiae (N = 29), S. pneumoniae (N = 103), viridans group Streptococcus spp. (N = 40, including Streptococcusanginosus, Streptococcus mitis, Streptococcus oralis, and Streptococcus salivarius), E. coli (N = 98), Klebsiella pneumoniae (N=100), Enterobacter cloacae (N=15), Citrobacter freundii (N = 15), Proteus mirabilis (N = 15), Serratia marcescens (N=14), Acinetobacter baumannii (N=39), Haemophilus spp. (N=113), and Moraxella catarrhalis (N = 32). Analysis of susceptibility data was conducted using the WHONET 5.6 software (http://www.whonet. org/).

Results

Omadacycline demonstrated excellent activity against Grampositive pathogens (Table 1). Omadacycline was highly potent against MSSA and methicillin-susceptible coagulase-negative *Staphylococcus* spp. (MSCNS) with MIC₉₀ values of 0.25 mg/L and 0.5 mg/L for MSSA and MSCNS, respectively. This activity was similar to that of tigecycline and doxycycline; 100% of isolates were susceptible to all 3 antibiotics. Omadacycline was slightly less active against MRSA and methicillin-resistant coagulase-negative *Staphylococcus* spp. compared with methicillin-susceptible strains with an MIC₉₀ value of 1 mg/L for both groups. A comparison of the frequency distribution of omadacycline minimum inhibitory

Fig. 1 Distribution of isolate collection sites across China. Clinical isolates of bacterial pathogens obtained from patients hospitalized in 29 provinces and municipalities across China. The location of each contributing hospital is depicted with a red dot

concentrations (MICs) against MRSA and MSSA is shown in Fig. 2a. For MRSA, 81.6% were susceptible to omadacycline, whereas 100% were susceptible to tigecycline (MIC₉₀ of 0.25 mg/L). For all groups of staphylococci, omadacycline was more active than the fluoroquinolones that were tested, which showed <50% susceptibility against methicillinresistant isolates.

All of the enterococci tested were inhibited by 0.25 mg/L or less of omadacycline. All isolates of E. faecium were inhibited by 0.12 mg/L of omadacycline, including isolates that were both susceptible (MIC₉₀ 0.12 mg/L) and those that were resistant (MIC₉₀≤0.06 mg/L) to vancomycin. Omadacycline was as active as tigecycline (100% susceptible, MIC_{90} = 0.25 mg/L), and more active than doxycycline (63.6% susceptible, $MIC_{90} = 4 \text{ mg/L}$) when tested against E. faecalis. For E. faecium, the MICs of omadacycline were similar to those of tigecycline (MIC₉₀ of 0.12 and ≤0.06 mg/L for vancomycin-sensitive Enterococcus (VSE) and vancomycin-resistant *Enterococcus* (VRE), respectively, with both compounds) and more active than doxycycline (MIC₉₀ of 8 and 4 mg/L for VSE and VRE, respectively). The isolates of E. faecium were highly susceptible to omadacycline, to other tetracyclines, and to linezolid, but the majority of the isolates of both vancomycin-susceptible and -resistant E. faecium were resistant to fluoroquinolones.

Omadacycline showed good activity against S. pneumoniae, with an MIC_{90} of 0.12 mg/L for all

groups including penicillin-susceptible (PSSP), intermediate (PISP), and -resistant S. pneumoniae (PRSP) and those resistant to erythromycin. The overall percent susceptibility for all resistance groups of S. pneumoniae was 100% for both omadacycline and tigecycline; however, these groups were only 0-35.7% susceptible to doxycycline. The susceptibility of fluoroquinolones remained high; however, the susceptibility of β-lactams (0 and 41.2% for penicillin and ceftriaxone, respectively) and azithromycin (1.5%) was reduced for PRSP. The MIC₉₀ values of omadacycline against the β-hemolytic streptococcal isolates S. pyogenes and S. agalactiae were 0.25 mg/L and 0.12 mg/L, respectively. For S. pyogenes, 77.5% of the isolates were susceptible to omadacycline, which was lower than that of tigecycline (100% susceptible). The β-hemolytic streptococci remained highly susceptible to β-lactams; however, S. pyogenes had reduced susceptibility to azithromycin and S. agalactiae had reduced susceptibility to fluoroquinolones. For viridans group streptococci, the MIC90 values for omadacycline, tigecycline, and doxycycline were 0.12 mg/L, \leq 0.03 mg/ L, and 8 mg/L, respectively. For Streptococcus dysgalactiae, the MIC₉₀ values for omadacycline, tigecycline, and doxycycline were 0.25 mg/L, 0.25 mg/L, and 8 mg/L, respectively.

Omadacycline exhibited good activity against *E. coli* irrespective of ESBL production, exhibiting MIC₉₀ values of 4 and 2 mg/L for ESBL-positive and ESBL-negative isolates,

 Table 1
 In vitro activity of omadacycline and comparators against Gram-positive pathogens isolates in China

Organism (N)	Antimicrobial	MIC (mg/L)			R%	S%
		Range	MIC ₅₀	MIC ₉₀		
S. aureus (200)	Omadacycline	≤0.06–2	0.12	0.5	0	91.0
	Tigecycline	\leq 0.06-0.5	\leq 0.06	0.12	0 ^a	100
	Doxycycline	0.06-8	0.12	4	0	95.5
	Ampicillin	0.12 -> 128	16	64	_b	-
	Levofloxacin	0.12 -> 128	0.25	32	26.5	73.0
	Moxifloxacin	≤0.06–32	≤ 0.06	4	22.0	74.0
	Linezolid	0.5–8	1	2	0.5	99.5
C	Vancomycin	0.25–1	0.5	0.5	0	100
S. aureus MRSA (98)	Omadacycline Tigecycline	0.12–2 ≤0.06–0.5	0.25 0.12	1 0.25	2.0 0 ^a	81.6 100
	Doxycycline	≤0.00=0.3 0.06 - 8	1	4	0	90.8
	Ampicillin	2-> 128	16	64	_b	-
	Levofloxacin	$0.12 \rightarrow 128$	8	64	52	46.9
	Moxifloxacin	≤0.06–32	1	4	44.9	49.0
	Linezolid	0.5–8	1	2	1.0	99.0
	Vancomycin	0.25-1	0.5	0.5	0	100
S. aureus MSSA (102)	Omadacycline	\leq 0.06-0.5	0.12	0.25	0	100
	Tigecycline	\leq 0.06-0.5	\leq 0.06	0.12	0^{a}	100
	Doxycycline	\leq 0.06-2	0.12	1	0	100
	Ampicillin	0.12-128	2	32	-	-
	Levofloxacin	0.12–8	0.25	0.5	2	98
	Moxifloxacin	≤0.06-1	≤0.06	0.12	0	98
	Linezolid	0.5–4	1	2	0 0	100
Coagulase-negative staphylococci (65)	Vancomycin Omadacycline	0.25-1 0.12-1	0.5 0.25	0.5 1	-	100
Coagulase-negative staphytococci (63)	Tigecycline	0.12−1 ≤0.06−0.25	0.23	0.25	-	_
	Doxycycline	0.03-8	0.12	4	0	92.3
	Ampicillin	≤0.06–32	1	8	-	-
	Levofloxacin	0.12-> 128	2	128	30.8	43.1
	Moxifloxacin	≤0.06-64	0.5	8	21.5	66.2
	Linezolid	0.25 -> 32	1	1	3.1	95.4
	Vancomycin	0.25-1	0.5	1	0	100
Coagulase-negative staphylococci MRCNS (33)	Omadacycline	0.12-1	0.5	1	-	-
	Tigecycline	\leq 0.06-0.25	0.12	0.25	-	-
	Doxycycline	0.03-8	0.25	8	0	84.8
	Ampicillin	1–32	4	16	-	-
	Levofloxacin	0.25-> 128	8	> 128	78.8	15.2
	Moxifloxacin	0.06–64	1	16	42.4	39.4
	Linezolid Vancomycin	$0.25 \rightarrow 32$ 0.5-1	1 0.5	1 1	6.1 0	93.9 100
Coagulase-negative staphylococci MSCNS (32)	Omadacycline	0.5-1	0.3	0.5	-	100
Coagulase-negative staphylococci MSCNS (32)	Tigecycline	$\leq 0.06 - 0.25$	0.12	0.12	-	-
	Doxycycline	0.06-4	0.06	0.5	0	100
	Ampicillin	0.06–16	0.25	0.5	-	-
	Levofloxacin	0.12-8	0.25	4	18.8	71.9
	Moxifloxacin	0.06-1	0.06	0.5	0	93.8
	Linezolid	0.5-1	1	1	0	100
	Vancomycin	0.25-1	0.5	1	0	100
Enterococcus faecalis (22)	Omadacycline	0.12-0.25	0.12	0.25	0	100
	Tigecycline	\leq 0.06-0.25	≤ 0.06	0.12	0^{a}	100
	Doxycycline	0.12–16	4	8	9.1	63.6
	Ampicillin	0.5–1	1	1	0	100
	Levofloxacin Moxifloxacin	0.5–64	1 0.25	2 0.25	4.5	95.5
	Linezolid	0.12–16 0.5–2	0.25 1	2	0	100
	Vancomycin	0.5–2 0.25–1	0.5	1	0	100
Enterococcus faecium (40)	Omadacycline	$\leq 0.06 - 0.12$	0.3 ≤0.06	0.12	-	-
Emerosocial facciani (10)	Tigecycline	≤0.06-0.12 ≤0.06-0.12	≤ 0.06 ≤ 0.06	0.12	-	_
	Doxycycline	0.06-8	0.25	8	0	87.5
	Ampicillin	1-> 128	128	> 128	97.5	2.5
	Levofloxacin	1-> 128	64	128	97.5	2.5
	Moxifloxacin	0.25-64	8	16	_	_

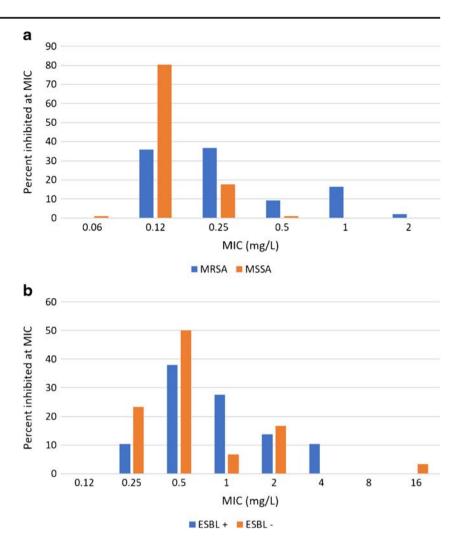
Table	1 .	(continued)
Table		(confinited)

Organism (N)	Antimicrobial	MIC (mg/L)			R%	S%
		Range	MIC ₅₀	MIC ₉₀		
	Linezolid	0.5–2	1	1	0	100
	Vancomycin	0.25 -> 32	0.5	>32	45.0	55.0
Enterococcus faecium (vancomycin-susceptible) (22)	Omadacycline	\leq 0.06-0.12	\leq 0.06	0.12	-	-
	Tigecycline	\leq 0.06-0.12	\leq 0.06	0.12	-	-
	Doxycycline	0.06-8	2	8	0	81.8
	Ampicillin	1-> 128	128	> 128	95.5	4.5
	Levofloxacin	1-> 128	64	128	95.5	4.5
	Moxifloxacin	0.25–64	8	16	-	-
	Linezolid	0.5–2 0.25–0.5	1	1 0.5	0	100 100
Enterococcus faecium (vancomycin-resistant) (18)	Vancomycin Omadacycline	0.23-0.3 ≤0.06-0.12	0.5 ≤0.06	0.3 ≤0.06	0	100
Emerococcus juecium (vanconnychi-tesistant) (18)	Tigecycline	$\leq 0.00-0.12$ $\leq 0.06-\leq 0.06$	≤0.06 ≤0.06	≤0.06 ≤0.06	-	_
	Doxycycline	0.06-8	≤ 0.06	4	0	94.4
	Ampicillin	32-> 128	> 128	> 128	100	0
	Levofloxacin	16–128	64	128	100	0
	Moxifloxacin	4–32	16	16	-	_
	Linezolid	0.5-1	1	1	0	100
	Vancomycin	32-> 32	> 32	> 32	100	0
Streptococcus pneumoniae (103)	Omadacycline	\leq 0.06-0.12	0.12	0.12	0	100
	Tigecycline	\leq 0.015–0.06	\leq 0.015	0.06	0^{a}	100
	Doxycycline	0.03-8	2	4	87.4	6.8
	Ceftriaxone	\leq 0.015–16	1	4	35.0	61.2
	Penicillin	≤0.015–16	2	4	65.0	14.6
	Levofloxacin	0.25–16	1	1	1.9	98.1
	Moxifloxacin	0.06-8	0.25 > 32	0.25 > 32	1.0 94.2	98.1 4.9
	Azithromycin Linezolid	$0.06 \rightarrow 32$ $\leq 0.25 - 1$	> 32 0.5	> 32 0.5	94.2 0 ^a	100
	Vancomycin	$\leq 0.23-1$ $\leq 0.12-0.25$	0.5 ≤0.12	0.3 ≤0.12	0^{a}	100
Streptococcus pneumoniae PSSP (14)	Omadacycline	≤0.12-0.23 ≤0.06-0.12	0.12	0.12	0	100
Sireproceeds pileumoniae 1 851 (11)	Tigecycline	≤0.015-0.06	≤0.015	0.06	0^{a}	100
	Doxycycline	0.03-4	0.5	4	50	35.7
	Ceftriaxone	\leq 0.015-0.06	≤ 0.015	0.03	0	100
	Penicillin	\leq 0.015-0.06	0.06	0.06	0	100
	Levofloxacin	0.5-16	1	1	7.1	92.9
	Moxifloxacin	0.12-2	0.12	0.25	0	92.9
	Azithromycin	0.06 -> 32	> 32	> 32	85.7	14.3
	Linezolid	≤0.25-1	0.5	0.5	0^{a}	100
G	Vancomycin	≤0.12-0.25	≤0.12	≤0.12	0 ^a	100
Streptococcus pneumoniae PISP (21)	Omadacycline	≤0.06-0.12	0.12	0.12	0 0 ^a	100
	Tigecycline	$\leq 0.015 - 0.12$	≤ 0.015	0.06 8	0 ^a 85.7	100 0
	Doxycycline Ceftriaxone	$0.5-8 \le 0.015-1$	0.12	0.5	0	100
	Penicillin	0.12-1	0.12	1	0	0
	Levofloxacin	0.25-1	1	1	0	100
	Moxifloxacin	0.06-0.25	0.12	0.25	0	100
	Azithromycin	0.25 -> 32	> 32	> 32	81	14.3
	Linezolid	\leq 0.25-1	\leq 0.25	0.5	0^{a}	100
	Vancomycin	\leq 0.12-0.25	\leq 0.12	\leq 0.12	0^{a}	100
Streptococcus pneumoniae PRSP (68)	Omadacycline	\leq 0.06-0.12	0.12	0.12	0	100
	Tigecycline	\leq 0.015–0.06	\leq 0.015	\leq 0.015	0^{a}	100
	Doxycycline	0.06–8	2	2	95.6	2.9
	Ceftriaxone	0.5–16	4	4	52.9	41.2
	Penicillin	2–16	2	4	100	0
	Levofloxacin	0.5–32	1	1	1.5	98.5
	Moxifloxacin	0.06–8	0.25	0.25	1.5	98.5
	Azithromycin Linezolid	$1 \rightarrow 32$	> 32 0.5	> 32 0.5	98.5 0 ^a	1.5
	Vancomycin	$\leq 0.25-0.5$ $\leq 0.12-0.25$	0.5 ≤0.12	0.5 ≤0.12	0° 0°	100 100
Streptococcus pneumoniae (erythromycin-resistant) (96)	Omadacycline	$\leq 0.12 - 0.25$ $\leq 0.06 - 0.12$	≤0.12 0.12	≤0.12 0.12	0	100
on epiococcus pricumoniae (cryunomyom-resistant) (90)	Tigecycline	$\leq 0.00-0.12$ $\leq 0.015-0.12$	0.12 ≤0.015	0.12	0^{a}	100
	Doxycycline	0.03-8	2	4	90.6	5.2
	Ceftriaxone	≤0.015–16	1	4	37.5	59.4

Table 1 (continued)

Organism (N)	Antimicrobial	MIC (mg/L)			R%	S%
		Range	MIC ₅₀	MIC ₉₀		
	Penicillin	≤0.015–16	2	4	3.1	65.6
	Levofloxacin	0.25–32	1	1	2.1	97.9
	Moxifloxacin	0.06-8	0.25	0.25	1	97.9
	Azithromycin	2-> 32	> 32	> 32	100	0
	Linezolid	$\leq 0.25-1$	0.5	0.5	0^{a}	100
	Vancomycin	\leq 0.12-0.25	\leq 0.12	\leq 0.12	0^{a}	100
Streptococcus pyogenes (80)	Omadacycline	\leq 0.06-0.5	0.12	0.25	1.2	77.5
	Tigecycline	\leq 0.015-0.06	0.06	0.06	0^{a}	100
	Doxycycline	0.06-8	4	4	-	-
	Ceftriaxone	\leq 0.015–0.25	0.03	0.03	0^{a}	100
	Penicillin	\leq 0.015–0.12	0.06	0.06	0^{a}	100
	Levofloxacin	0.25-2	0.5	0.5	0	100
	Moxifloxacin	0.06-0.25	0.12	0.12	-	-
	Azithromycin	0.06 -> 32	> 32	> 32	91.1	8.9
	Linezolid	\leq 0.25-1	0.5	1	0^{a}	100
	Vancomycin	\leq 0.12-0.5	0.25	0.25	0^{a}	100
Streptococcus agalactiae (21)	Omadacycline	\leq 0.06-0.25	0.12	0.12	-	-
	Tigecycline	0.03 - 0.06	0.06	0.06	0^{a}	100
	Doxycycline	0.06 - 32	4	8	-	-
	Ceftriaxone	0.06-0.06	0.06	0.06	0^{a}	100
	Penicillin	0.03 - 0.12	0.12	0.12	0^{a}	100
	Levofloxacin	0.5 -> 32	16	32	57.1	42.9
	Moxifloxacin	0.12-4	2	4	-	-
	Azithromycin	0.06 -> 32	> 32	> 32	76.2	19
	Linezolid	1-1	1	1	0^{a}	100
	Vancomycin	0.25-0.25	0.25	0.25	0^{a}	100
Viridans group streptococci (40)	Omadacycline	\leq 0.06-0.5	0.12	0.12	-	-
	Tigecycline	\leq 0.015-0.25	\leq 0.015	0.03	0^{a}	100
	Doxycycline	\leq 0.015–16	1	8	-	-
	Ceftriaxone	0.03-8	0.25	4	17.5	80
	Penicillin	0.06-8	0.25	4	15	45
	Levofloxacin	0.12-32	1	2	10	90
	Moxifloxacin	0.03-4	0.12	0.5	-	-
	Azithromycin	\leq 0.015-> 32	> 32	> 32	67.5	30
	Linezolid	\leq 0.25-2	0.5	1	0^{a}	100
	Vancomycin	\leq 0.12-0.5	0.25	0.5	0^{a}	100
Streptococcus dysgalactiae (29)	Omadacycline	\leq 0.06-0.5	0.12	0.25	-	-
	Tigecycline	0.03-0.25	0.06	0.25	0^{a}	100
	Doxycycline	0.06-8	0.25	8	-	-
	Ceftriaxone	0.03 - 0.06	0.03	0.06	0^{a}	100
	Penicillin	\leq 0.015–0.12	0.06	0.06	0^{a}	100
	Levofloxacin	0.25-16	0.5	16	24.1	75.9
	Moxifloxacin	0.06-2	0.25	2	-	-
	Azithromycin	0.06 -> 32	> 32	> 32	79.3	20.7
	Linezolid	0.5-1	1	1	0^{a}	100
	Vancomycin	0.12-0.25	0.25	0.25	0^{a}	100

^a Non-susceptible (susceptible only breakpoint)


respectively. The MIC frequency distribution for omadacycline is nearly identical when tested against ESBL-positive and -negative strains (Fig. 2b). Omadacycline was highly active against carbapenem-resistant $E.\ coli$ (KPC or NDM producers); 95% of isolates were susceptible to omadacycline (MIC $_{90}=4$ mg/L). Overall, for $E.\ coli$, omadacycline was more active than doxycycline, which had an MIC $_{90}$ value of 32 mg/L and \leq 56.7% susceptibility for all

subsets. Similar to what was seen with $E.\ coli$, omadacycline showed the same activity against the $Klebsiella\ pneumoniae$ irrespective of ESBL production, with MIC₉₀ values of 8 mg/L for both groups, which correlated to 87.5% and 89.3% susceptibility for ESBL-negative and -positive isolates, respectively, which was slightly lower than that for tigecycline (> 90% susceptible). In addition, omadacycline had reduced activity against carbapenem-resistant $K.\ pneumoniae\ (MIC₉₀ =$

^b No breakpoint assigned

Fig. 2 MIC frequency distribution of omadacycline against key pathogens. The histogram of MIC frequency distribution of omadacycline is shown. **a** *S. aureus*; MRSA (*N* = 98) and MSSA (*N* = 102). **b** *E. coli*; ESBL-positive (*N* = 29) and EBSL-negative (*N* = 30)

32 mg/L, 75% susceptible). Omadacycline was active against *E. cloacae*, *C. freundii*, and *S. marcescens* with MIC₉₀ values of 16 mg/L (89.7% susceptible), 4 mg/L (93.3% susceptible), and 4 mg/L (100% susceptible), respectively. All of the isolates of *E. cloacae*, *C. freundii*, and *S. marcescens* were susceptible to tigecycline; however, susceptibility to doxycycline ranged from 66.7 to 86.7%. As expected, omadacycline had limited activity against *P. mirabilis* (MIC₉₀ = 32 mg/L).

Omadacycline also showed good activity against *A. baumannii*, inhibiting all the carbapenem-susceptible isolates at 1 mg/L. The MIC₉₀ increased to 4 mg/L for carbapenem-resistant *A. baumannii*. For comparison, the MIC₉₀ values of tigecycline for carbapenem-susceptible and resistant *A. baumannii* were 0.25 and 2 mg/L, respectively and for doxycycline was 0.25 and 32 mg/L, respectively. Against carbapenem-resistant *A. baumannii*, omadacycline showed similar activity to tigecycline with MIC₉₀ values of 4 mg/L and 2 mg/L for omadacycline and tigecycline, respectively. In contrast, none of the comparators had more than 33.3% susceptibility for carbapenem-resistant *A. baumannii*. *H. influenzae* (with or without β-lactamase production) and

Hemophilus parainfluenzae were very susceptible to omadacycline with MIC₉₀ values of 2 mg/L, 1 mg/L, 1 mg/L, respectively (100% susceptible). Omadacycline was highly active against *M. catarrhalis* with all the isolates inhibited at 0.5 mg/L.

Discussion

The overuse and misuse of antibiotics have led to the rapid emergence of antibiotic-resistant bacterial pathogens, thereby reducing their therapeutic potential to treat infections. Multidrug-resistant bacterial pathogens have been widely reported in China, the prevalence of which has been linked to zealous prescribing in the healthcare setting, as well as the availability of these agents in the community pharmacy [13]. In addition, there is still widespread use of antibiotics in veterinary medicine and agriculture, which has led to a high prevalence of antibiotic resistance in livestock [14]. One example is the transmissible colistin-resistance gene *mcr-1* that was first isolated in a porcine *E. coli* strain in China but has

Table 2 In vitro activity of omadacycline and comparators against Gram-negative pathogens isolates in China R% S% Organism Antimicrobial MIC (mg/L) (N)Range MIC_{50} MIC_{90} _a Escherichia coli (98) 0.25-164 Omadacycline 1 0 Tigecycline $\leq 0.06-2$ 0.12 0.25 100 Doxycycline $\leq 0.25 -> 32$ 8 32 44.9 39.8 Imipenem 0.12-160.25 4 12.2 80.6 Cefepime \leq 0.06-> 64 8 >64 45.9 45.9 Ceftriaxone \leq 0.06-> 64 > 64 >64 60.2 39.8 2 Piperacillin/tazobactam 0.5 -> 128>128 23.4 75.5 Amikacin 0.5 -> 1281 16 9.2 92.9 Levofloxacin \leq 0.06-> 64 8 32 65.3 30.6 Trimethoprim-sulfamethoxazole 72.4 $\leq 0.06 -> 64$ >64 >64 27.6 Escherichia coli (ESBL-positive) (29) Omadacycline 0.25 - 41 4 Tigecycline 0.12 - 0.50.25 0 100 0.12 8 32 Doxycycline 0.5 - 3234.5 44.8 Imipenem 0.12 - 0.250.25 0.25 100 0 Cefepime 2 -> 64>64 >64 79.3 10.3 Ceftriaxone > 64-> 64 >64 >64 100 0 Piperacillin/tazobactam 1 -> 1284 > 12813.8 86.2 Amikacin 0.5 -> 1281 > 128 10.3 89.7 Levofloxacin 8 32 72.4 24.1 $\leq 0.06-64$ Trimethoprim-sulfamethoxazole \leq 0.06/ \rightarrow 64 72.4 27.6 > 64 > 64 Escherichia coli (ESBL-negative) (30) Omadacycline 0.25 - 160.5 2 Tigecycline \leq 0.06-0.5 0.12 0.25 0 100 Doxycycline 0.25 - 324 32 33.3 56.7 Imipenem 0.12 - 0.50.25 0.25 0 100 0.25 0 100 Cefepime \leq 0.06-0.25 ≤ 0.06 Ceftriaxone \leq 0.06-0.12 ≤ 0.06 0.12 0 100 Piperacillin/tazobactam 0.5 - 81 4 0 100 2 96.7 Amikacin 0.5 -> 1283.3 Levofloxacin 8 \leq 0.06-64 0.5 36.7 53.3 Trimethoprim-sulfamethoxazole $\leq 0.06 -> 64$ > 64 > 64 66.7 33.3 Escherichia coli (carbapenemase-positive) (20) Omadacycline 0.5 - 81 4 0.12 - 10.25 0.25 100 Tigecycline 0 Doxycycline 0.5 -> 328 32 45 40 5 Imipenem 0.25-164 8 60 Cefepime 0.25 -> 6464 >64 80 5 Ceftriaxone \leq 0.06-> 64 > 64 > 64 95 5 Piperacillin/tazobactam 4/->128> 128 > 128 95 5 Amikacin 0.5 -> 12864 15 85 Levofloxacin 0.25 -> 6416 32 90 10 75 Trimethoprim-sulfamethoxazole \leq 0.06-> 64 >64 25 >64 Escherichia coli tetracycline-R (19) Omadacycline 0.5 - 161 8 0.12 - 20.12 1 0 100 Tigecycline Doxycycline 0.5 - 3216 32 52.6 31.6 Imipenem 0.12 - 0.50.25 0.25 0 100 2 Cefepime >64 31.6 57.9 $\leq 0.06 -> 64$

Ceftriaxone

Piperacillin/tazobactam

 \leq 0.06-> 64

1 - 32

> 64

16

>64

2

57.9

0

42.1

94.7

Table 2	(continued)

Trimethoprim-sulfamethoxazole \$0.06-564 \$0.5 \$0.5 \$1 \$1.5	ganism	Antimicrobial	MIC (mg/L)			R%	S%
Levolloxacin			Range	MIC ₅₀ MIC ₉₀			
Trimethoprim-sulfamethoxazole \$0.06-564 \$-64 \$-78.1		Amikacin	0.5–128	1	16	5.3	94.7
Machase Contact Cont		Levofloxacin	0.5 -> 64	8	>64	73.7	26.3
Tigecycline		Trimethoprim-sulfamethoxazole	\leq 0.06-> 64	> 64	> 64	78.9	21.1
Doxycycline	bsiella pneumoniae (100)	Omadacycline	0.25-64	2	16	13.0	77.0
Imipenem		Tigecycline	\leq 0.06–8	0.5	2	2.0	94.0
Cefepime		Doxycycline	\leq 0.25–32	8	32	33.0	44.0
Ceftriaxone		Imipenem	\leq 0.06–64	0.25	16	23.0	76.0
Piperacillin/tazobactam \$0.12~> 128 8 \$128 26.6 Amikacin \$0.25~> 128 0.5 \$128 17.6 Levofloxacin \$0.06~> 64 0.5 64 38.1 Izmethoprim-sulfamethoxazole \$0.06~> 64 \$6.4 \$6.4 \$6.4 Timethoprim-sulfamethoxazole \$0.06~> 64 \$6.5 Mebsiella pneumoniae (ESBL-positive) (28) Omadacycline 1-32 4 8 7.1 Tigecycline \$0.25~4 0.5 1 0 Doxycycline 1-32 8 32 42.1 Imipenem \$0.06~1 0.25 0.5 0.5 Cefepime \$0.5~64 64 \$64 \$64 \$64 Cefriaxone \$4~>64 \$64 \$64 \$64 \$64 Piperacillin/tazobactam 1-> 128 8 \$128 17.1 Amikacin \$0.5~> 128 0.5 4 3.6 Levofloxacin \$0.06~> 64 0.5 3.1 Tigecycline \$0.06~> 64 0.5 3.2 35.1 Cefepime \$0.06~> 64 0.5 3.2 35.1 Tigecycline \$0.06~> 64 0.5 3.2 35.1 Tigecycline \$0.06~> 64 0.5 0.5 0.5 0.5 Cefepime \$0.06~> 0.25 0.05 0.05 Cefepime \$0.06~> 0.25 0.05 0.05 Cefepime \$0.06~> 0.25 0.05 0.05 Cefepime \$0.06~> 0.25 0.05 0.05 0.05 Cefepime \$0.06~> 0.06~> 0.05 0.05 Cefepime \$0.06~> 0.05~> 0.05 0.05 Cefepime \$0.06~> 0.05~> 0.05 0.05 Cefepime \$0.06~> 0.05~> 0.0		Cefepime	≤0.06->64	32	>64	58.0	40.0
Amikacin		Ceftriaxone	≤0.06->64	>64	>64	63.0	36.0
Levofloxacin		Piperacillin/tazobactam	\leq 0.12-> 128	8	> 128	26.0	68.0
Trimethoprim-sulfamethoxazole \$0.06->64 > 64 > 64 \$5.1		Amikacin	0.25-> 128	0.5	> 128	17.0	83.0
Mebsiella pneumoniae (ESBL-positive) (28)		Levofloxacin	\leq 0.06-> 64	0.5	64	38.0	56.0
Tigecycline		Trimethoprim-sulfamethoxazole	\leq 0.06-> 64	>64	> 64	55.0	45.0
Doxycycline	bsiella pneumoniae (ESBL-positive) (28)	Omadacycline	1–32	4	8	7.1	89.3
Imipenem		Tigecycline	0.25-4	0.5	1	0	96.4
Cefepime		Doxycycline	1–32	8	32	42.9	17.9
Ceftriaxone		Imipenem	≤0.06–1	0.25	0.5	0	100
Piperacillin/tazobactam		_	0.5-> 64	64	> 64	89.3	10.7
Amikacin 0.5->128 0.5 4 3.6 Levofloxacin		Ceftriaxone	4->64	> 64	> 64	100	0
Amikacin 0.5->128 0.5 4 3.6 Levofloxacin		Piperacillin/tazobactam	1-> 128	8	> 128	17.9	82.1
Trimethoprim-sulfamethoxazole \$0.06->64 \$64 \$64 \$78.4 \$8.5 \$1.5		=	0.5-> 128	0.5	4	3.6	96.4
Trimethoprim-sulfamethoxazole \$0.06-\$64 \$64 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$64 \$78.4 \$65 \$64 \$65 \$64 \$65 \$64 \$65 \$64 \$65 \$64 \$65 \$65 \$64 \$65		Levofloxacin	≤0.06->64	0.5	32	35.7	60.7
Klebsiella pneumoniae (ESBL-negative) (32) Omadacycline 0.25-16 1 8 3.1 Tigecycline \$\int 0.06-2 0.25 1 0 Doxycycline 025-16 1 8 6.2 Imipenem 0.12-0.5 0.25 0.25 0 Cefepime \$\int 0.06-1 \$\int 0.06 0.25 0 Ceftriaxone \$\int 0.06-0.25 \$\int 0.06 0.12 0 Piperacillin/tazobactam \$\int 0.12-16 2 8 0 Amikacin 0.25->128 0.5 1 3.1 Levofloxacin \$\int 0.06-1 \$\int 0.06 0.5 0 Trimethoprim-sulfamethoxazole \$\int 0.06-964 \$\int 0.06 0.5 0 Tigecycline 0.25-8 0.5 2 5 Doxycycline 1-32 2 32 35 Imipenem 0.5-32 16 32 95 Cefepime 64->64 >64 >64 >64 100 Cefepime 64->64 >64 >64 100 Cefepime <td></td> <td>Trimethoprim-sulfamethoxazole</td> <td></td> <td></td> <td></td> <td>78.6</td> <td>21.4</td>		Trimethoprim-sulfamethoxazole				78.6	21.4
Tigecycline ≤ 0.06-2 0.25 1 0 Doxycycline 025-16 1 8 6.2 Imipenem 0.12-0.5 0.25 0.25 0 Cefepime ≤ 0.06-1 ≤ 0.06 0.25 0 Ceftriaxone ≤ 0.06-0.25 ≤ 0.06 0.12 0 Piperacillin/tazobactam ≤ 0.12-16 2 8 0 Amikacin 0.25->128 0.5 1 3.1 Levofloxacin ≤ 0.06-1 ≤ 0.06 0.5 0 Trimethoprim-sulfamethoxazole ≤ 0.06->64 ≤ 0.06 > 64 15.0 Klebsiella pneumoniae (carbapenemase-positive) (20) Omadacycline 1-64 4 32 25 Tigecycline 0.25-8 0.5 2 32 35 Imipenem 0.5-32 16 32 95 Cefepime 64->64 > 64 > 64 100 Ceftriaxone > 64-> 64 > 64 > 64 100 Ceftriaxone > 64-> 64 > 64 > 64 100 Amikacin	bsiella pneumoniae (ESBL-negative) (32)			1	8		87.5
Doxycycline 025-16 1 8 6.2		·	\leq 0.06–2	0.25	1	0	100
Imipenem		= :			8	6.2	78.1
Cefepime \$0.06-1 \$0.06 0.25 0			0.12-0.5	0.25	0.25		100
Ceftriaxone ≤ 0.06-0.25 ≤ 0.06 0.12 0 Piperacillin/tazobactam ≤ 0.12-16 2 8 0 Amikacin 0.25->128 0.5 1 3.1 Levofloxacin ≤ 0.06-1 ≤ 0.06 > 64 15. Klebsiella pneumoniae (carbapenemase-positive) (20) Omadacycline 1-64 4 32 25 Tigecycline 0.25-8 0.5 2 5 Doxycycline 1-32 2 32 35 Imipenem 0.5-32 16 32 95 Cefepime 64->64 > 64 > 64 100 Piperacillin/tazobactam 2-> 128 > 128 > 128 90 Amikacin 0.25-> 128 > 128 > 128 55 Levofloxacin ≤ 0.06-> 64 > 64 > 64 66 Trimethoprim-sulfamethoxazole ≤ 0.06-> 64 > 64 > 64 66 Klebsiella pneumoniae tetracycline-R (20) Omadacycline 1-64 8 16 25 Tigecycline 0.25-8 1 4 5 <		•	≤0.06–1	≤0.06	0.25	0	100
Piperacillin/tazobactam \$\leq 0.12-16 2 8 0 Amikacin 0.25->128 0.5 1 3.1 Levofloxacin \$\leq 0.06-1 \leq 0.06 0.5 0 Trimethoprim-sulfamethoxazole \$\leq 0.06->64 \leq 0.06 > 64 15.0 Klebsiella pneumoniae (carbapenemase-positive) (20) Omadacycline 1-64 4 32 25 Tigecycline 0.25-8 0.5 2 5 Doxycycline 1-32 2 32 35 Imipenem 0.5-32 16 32 95 Cefepime 64->64 > 64 > 64 > 64 100 Ceftriaxone > 64->64 > 64 > 64 100 Piperacillin/tazobactam 2->128 > 128 > 128 > 128 90 Amikacin 0.25->128 > 128 > 128 55 Levofloxacin \$\leq 0.06->64 > 64 > 64 65 Trimethoprim-sulfamethoxazole \$\leq 0.06->64 > 64 > 64 60 Klebsiella pneumoniae tetracycline-R (20) Omadacycline 1-64 8 16 25 Tigecycline 0.25-8 1 4 5		=	_ ≤0.06–0.25		0.12	0	100
Amikacin 0.25→128 0.5 1 3.1 Levofloxacin ≤0.06−1 ≤0.06 0.5 0 Trimethoprim-sulfamethoxazole ≤0.06→64 ≤0.06 >64 15.4 Klebsiella pneumoniae (carbapenemase-positive) (20) Omadacycline 1−64 4 32 25 Tigecycline 0.25−8 0.5 2 5 Doxycycline 1−32 2 32 35 Imipenem 0.5−32 16 32 95 Cefepime 64→64 >64 >64 >64 100 Ceftriaxone >64→64 >64 >64 >64 100 Piperacillin/tazobactam 2−>128 >128 >128 >128 90 Amikacin 0.25−>128 >128 >128 55 Levofloxacin ≤0.06→64 16 >64 >64 65 Trimethoprim-sulfamethoxazole ≤0.06→64 >64 >64 66 Klebsiella pneumoniae tetracycline-R (20) Omadacycline 1−64 8 16 25 Tigecycline 0.25−8 1 4 5		Piperacillin/tazobactam				0	100
Trimethoprim-sulfamethoxazole		•		0.5		3.1	96.9
Trimethoprim-sulfamethoxazole		Levofloxacin	≤0.06–1	≤0.06	0.5	0	93.8
Klebsiella pneumoniae (carbapenemase-positive) (20) Omadacycline 1-64 4 32 25 Tigecycline 0.25-8 0.5 2 5 Doxycycline 1-32 2 32 35 Imipenem 0.5-32 16 32 95 Cefepime 64->64 >64 >64 100 Ceftriaxone >64->64 >64 >64 100 Piperacillin/tazobactam 2-> 128 >128 >128 90 Amikacin 0.25-> 128 >128 >128 55 Levofloxacin ≤0.06-> 64 16 >64 65 Trimethoprim-sulfamethoxazole ≤0.06-> 64 >64 >64 60 Klebsiella pneumoniae tetracycline-R (20) Omadacycline 1-64 8 16 25 Tigecycline 0.25-8 1 4 5						15.6	84.4
Tigecycline 0.25–8 0.5 2 5 Doxycycline 1–32 2 32 35 Imipenem 0.5–32 16 32 95 Cefepime 64–>64 > 64 > 64 100 Ceftriaxone > 64–>64 > 64 > 64 100 Piperacillin/tazobactam 2–> 128 > 128 > 128 90 Amikacin 0.25–> 128 > 128 > 128 55 Levofloxacin ≤0.06–> 64 16 > 64 65 Trimethoprim-sulfamethoxazole ≤0.06–> 64 > 64 > 64 60 Klebsiella pneumoniae tetracycline-R (20) Omadacycline 1–64 8 16 25 Tigecycline 0.25–8 1 4 5	bsiella pneumoniae (carbapenemase-positive) (20)						75
Doxycycline	, , , , , , , , , , , , , , , , , , ,						90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					32	35	55
Cefepime $64 -> 64$ > 64 > 64 > 64 100 Ceftriaxone $> 64 -> 64$ > 64 > 64 100 Piperacillin/tazobactam $2 -> 128$ > 128 > 128 90 Amikacin $0.25 -> 128$ > 128 > 128 > 55 Levofloxacin $\leq 0.06 -> 64$ 16 > 64 65 Trimethoprim-sulfamethoxazole $\leq 0.06 -> 64$ > 64 > 64 < 60 Klebsiella pneumoniae tetracycline-R (20) Omadacycline $1 - 64$ 8 16 25 Tigecycline $0.25 -8$ 1 4 5							5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_				100	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	>64->64	> 64		100	0
Amikacin $0.25 \rightarrow 128 > 128 > 128 > 55$ Levofloxacin $\leq 0.06 \rightarrow 64 = 16 > 64 = 65$ Trimethoprim-sulfamethoxazole $\leq 0.06 \rightarrow 64 = 64 > 64 = 60$ Klebsiella pneumoniae tetracycline-R (20) Omadacycline $1-64 = 8 = 16 = 25$ Tigecycline $0.25-8 = 1 = 4 = 5$							5
Levofloxacin $\leq 0.06 -> 64$ 16 > 64 65 Trimethoprim-sulfamethoxazole $\leq 0.06 -> 64$ > 64 > 64 60 Klebsiella pneumoniae tetracycline-R (20) Omadacycline 1-64 8 16 25 Tigecycline 0.25-8 1 4 5		=					45
Trimethoprim-sulfamethoxazole ≤ 0.06 -> 64 > 64 > 60 Klebsiella pneumoniae tetracycline-R (20) Omadacycline 1-64 8 16 25 Tigecycline 0.25-8 1 4 5							25
Klebsiella pneumoniae tetracycline-R (20) Omadacycline 1–64 8 16 25 Tigecycline 0.25–8 1 4 5							40
Tigecycline 0.25–8 1 4 5	bsiella pneumoniae tetracycline-R (20)						45
	Francisco Franci	·					85
DOMANDA 07 10 37 DO		Doxycycline	0.25-32	16	32	60	15
Imipenem 0.12–64 0.25 16 20							75

Table 2 (continued) Antimicrobial R% S% Organism MIC (mg/L) (N)Range MIC_{50} MIC_{90} Cefepime 0.25 -> 6465 25 64 >64 Ceftriaxone 80 20 \leq 0.06-> 64 >64 >64 Piperacillin/tazobactam 1-> 128 16 > 128 35 55 Amikacin 0.25 -> 128> 128 20 80 0.5 Levofloxacin \leq 0.06-> 64 8 >64 75 20 Trimethoprim-sulfamethoxazole \leq 0.06-> 64 > 64 >64 80 20 1-32 2 86.7 Enterobacter cloacae (15) Omadacycline 16 13.3 Tigecycline 0.25 - 20.5 2 0 100 Doxycycline 0.5 -> 322 32 13.3 86.7 0.25 - 168 20 80 Imipenem 0.5 Cefepime \leq 0.06-> 64 0.12 > 64 20 73.3 Ceftriaxone \leq 0.06-> 64 0.25 >64 33.3 66.7 2 Piperacillin/tazobactam 1-> 128 > 128 20 66.7 Amikacin 0.5 -> 1280.5 > 128 13.3 86.7 Levofloxacin \leq 0.06-16 ≤0.06 8 13.3 80 Trimethoprim-sulfamethoxazole \leq 0.0-> 64 ≤0.06 >64 26.7 73.3 Citrobacter freundii (15) Omadacycline 0.5 - 161 4 Tigecycline 0.12-10.25 0.5 0 100 32 Doxycycline 1 - 3220 66.7 Imipenem 0.25 - 640.5 8 20 80 Cefepime \leq 0.06-> 64 0.25 64 20 73.3 Ceftriaxone \leq 0.06-> 64 0.5 >64 46.7 53.3 Piperacillin/tazobactam 1 -> 1282 > 128 20 73.3 Amikacin 0.5 -> 1280.5 6.7 93.3 1 Levofloxacin \leq 0.06-8 0.5 8 53.3 26.7 Trimethoprim-sulfamethoxazole \leq 0.06-> 64 ≤ 0.06 >64 33.3 66.7 Serratia marcescens (14) Omadacycline 1-4 2 4 0 0.5 - 41 1 92.9 Tigecycline 4 8 0 78.6 Doxycycline 1 - 80.5 14.3 85.7 Imipenem 0.5 -> 64> 64 Cefepime ≤0.06->64 0.25 64 14.3 85.7 Ceftriaxone 0.25 14.3 85.7 0.12 -> 64>64 Piperacillin/tazobactam 1 -> 1282 128 14.3 85.7 2 7.1 92.9 Amikacin 0.5 -> 1281 Levofloxacin \leq 0.06-32 0.25 4 14.3 85.7 Trimethoprim-sulfamethoxazole \leq 0.06-0.25 0.12 0.25 0 100 Proteus mirabilis (15) Omadacycline 8-64 32 64 Tigecycline 2-8 4 8 26.7 20 Doxycycline 16 -> 3232 64 100 0 0.5-22 0 Imipenem 1 60 4 Cefepime \leq 0.06-16 0.25 6.7 86.7 Ceftriaxone \leq 0.06-> 64 ≤ 0.06 26.7 66.7 > 64 Piperacillin/tazobactam 0.25-20.5 1 0 100 Amikacin 1 - 82 4 0 100 Levofloxacin \leq 0.06-32 1 32 46.7 33.3 Trimethoprim-sulfamethoxazole \leq 0.06-> 64 33.3 >64 >64 66.7

Table 2	(continued)

Organism (N)	Antimicrobial	MIC (mg/L)			R%	S%
		Range	MIC ₅₀	MIC ₉₀		
Acinetobacter baumannii (39)	Omadacycline	≤0.06–8	1	4	-	
	Tigecycline	\leq 0.06–4	0.5	2	-	-
	Doxycycline	\leq 0.25–32	32	32	53.8	46.2
	Imipenem	\leq 0.06–32	8	16	53.8	46.2
	Cefepime	1->64	64	> 64	53.8	46.2
	Ceftazidime	2->64	64	> 64	51.3	46.2
	Piperacillin/tazobactam	≤0.12-> 128	>128	> 128	53.8	41.0
	Amikacin	0.25-> 128	1	> 128	43.6	56.4
	Levofloxacin	≤0.06–32	8	16	53.8	46.2
	Trimethoprim-sulfamethoxazole	≤ 0.06-> 64	0.5	> 64	38.5	61.5
Acinetobacter baumannii (carbapenem-susceptible) (18)	Omadacycline	≤ 0.06–1	0.12	1	-	_
(- e)	Tigecycline	≤ 0.06–0.25	0.12	0.25	_	_
	Doxycycline	0.25–2	0.25	0.25	0	100
	Imipenem	$\leq 0.06-0.5$	0.25	0.5	0	100
	Cefepime	1-8	2	4	0	100
	Ceftazidime	2–8	4	8	0	100
	Piperacillin/tazobactam	≤0.12–32	0.25	32	0	88.9
	Amikacin	≤0.12=32 0.25=1	0.23	1	0	100
	Levofloxacin					
		$\leq 0.06 - 0.25$	0.12	0.25	0	100
	Trimethoprim-sulfamethoxazole	≤0.06->64	≤0.06	0.12	5.6	94.4
Acinetobacter baumannii (carbapenem-resistant) (21)	Omadacycline	1-8	2	4	-	-
	Tigecycline	0.5–4	2	2	-	-
	Doxycycline	16–32	32	32	100	0
	Imipenem	8–32	16	16	100	0
	Cefepime	32-> 64	> 64	> 64	100	0
	Ceftazidime	16-> 64	> 64	> 64	95.2	0
	Piperacillin/tazobactam	> 128-> 128	> 128	> 128	100	0
	Amikacin	0.5-> 128	> 128	> 128	81	19
	Levofloxacin	8–32	16	16	100	0
	Trimethoprim-sulfamethoxazole	0.12 -> 64	32	> 64	66.7	33.3
Haemophilus influenzae (101)	Omadacycline	\leq 0.06–2	1	2	0	100
	Tigecycline	\leq 0.06–2	1	2	0	100
	Doxycycline	\leq 0.015–2	0.12	0.25	-	-
	Ceftriaxone	\leq 0.015–0.25	\leq 0.015	0.12	0	100
	Ampicillin	\leq 0.06-> 128	4	128	48.5	48.5
	Amoxicillin/clavulanic acid	0.12 -> 16	2	8	11.9	88.1
	Levofloxacin	\leq 0.015–0.5	\leq 0.015	0.5	$0_{\rm p}$	100
	Moxifloxacin	\leq 0.015–1	0.03	0.5	0 b	100
	Azithromycin	\leq 0.06-> 32	2	> 32	34.6^{b}	65.3
Haemophilus influenzae (β-lactamase positive) (50)	Omadacycline	\leq 0.06–2	1	2	0	100
	Tigecycline	1–2	2	2	0	100
	Doxycycline	0.06-0.5	0.12	0.25	-	-
	Ceftriaxone	\leq 0.015–0.25	0.06	0.12	0	100
	Ampicillin	0.5-> 128	64	> 128	96	4
	Amoxicillin/clavulanic acid	1–32	4	8	24	76
	Levofloxacin	≤0.015–0.5	≤0.015	0.5	$0_{\rm p}$	100
	Moxifloxacin	≤ 0.015-1	0.03	0.5	$0_{\rm p}$	100

Table 2	(continued)
Table 2	(COHIIIIII)

Organism	Antimicrobial	MIC (mg/L)			R%	S%
(N)		Range	MIC ₅₀	MIC ₉₀		
	Azithromycin	≤0.06->32	> 32	> 32	64 ^b	36
Haemophilus influenzae (β-lactamase negative) (51)	Omadacycline	0.5-2	1	1	0	100
	Tigecycline	0.06-1	1	1	0	100
	Doxycycline	\leq 0.015–0.25	0.12	0.25	-	-
	Ceftriaxone	\leq 0.015–0.25	\leq 0.015	0.12	-	100
	Ampicillin	\leq 0.06–32	0.5	1	5.9	92.2
	Amoxicillin/clavulanic acid	0.12-4	1	2	7.8	92.2
	Levofloxacin	\leq 0.015–0.5	\leq 0.015	0.12	$0_{\rm p}$	100
	Moxifloxacin	\leq 0.015–0.5	0.03	0.12	$0_{\rm p}$	100
	Azithromycin	\leq 0.06-> 32	2	2	5.9 ^b	94.1
Hemophilus parainfluenzae (12)	Omadacycline	0.5-1	1	1	0	100
	Tigecycline	1–2	2	2	0	100
	Doxycycline	0.12-0.5	0.25	0.25	-	-
	Ceftriaxone	\leq 0.015–0.25	0.06	0.25	-	100
	Ampicillin	0.25 -> 128	0.5	1	8.3	91.7
	Amoxicillin/clavulanic acid	0.5-4	0.5	2	0	100
	Levofloxacin	0.03-1	0.12	1	-	100
	Moxifloxacin	0.06-1	0.25	1	-	100
	Azithromycin	0.12-2	1	2	-	100
Moraxella catarrhalis (32)	Omadacycline	0.12-0.5	0.25	0.5	-	-
	Tigecycline	0.06-0.5	0.5	0.5	-	-
	Doxycycline	0.06-1	012	0.12	-	-
	Ceftriaxone	\leq 0.015–1	0.25	1	-	100
	Ampicillin	≤0.06–4	1	4	-	-
	Amoxicillin/clavulanic acid	0.12-0.5	0.25	0.5	0	100
	Levofloxacin	0.03-1	0.06	0.5	-	100
	Moxifloxacin	0.03-0.5	0.06	0.12	-	-
	Azithromycin	≤0.06->32	≤ 0.06	> 32	-	78.1

^a No breakpoint assigned

now been found in human infections worldwide [15]. Many of these antibiotics wind up in sewage and wastewater, leading to significant quantities of antibiotics in the rivers of China, compounding the problem of increased exposure to antibiotics [16].

In the clinical setting, the prevalence of antibiotic resistance in China increased to more than three times that of the USA between the years 1999 and 2003 [17]. A recent meta-analysis showed that Chinese patients infected with antibiotic-resistant pathogens were at a greater risk of mortality compared with those with susceptibility or those without infection, with a significant increase in overall costs of the hospital stay [18]. New antimicrobial agents are needed to address the resistant pathogens found in China.

Omadacycline was developed to circumvent resistance mechanisms that affect the older generation of tetracyclines including minocycline and doxycycline. Omadacycline retains activity against bacterial strains that carry resistance genes for ribosomal protection (e.g., tetM) and tetracycline efflux (e.g., tetA, tetK, and tetL) [19]. In addition, there is no cross-resistance of omadacycline with other classes of antibiotics [20]. The safety and efficacy of omadacycline have been well studied in a series of well-controlled clinical trials. The clinical efficacy of omadacycline has been demonstrated, and it has been approved for use in adult patients in the treatment of CABP and ABSSSI in the USA [5–7, 21]. The proven efficacy of the oral formulation of omadacycline is an attribute that is not found in the other

^b Non-susceptible (susceptible-only breakpoint)

new-generation tetracyclines, tigecycline, and eravacycline that are only available through IV therapy.

In this study, the in vitro activity of omadacycline was assessed for a broad range of Gram-positive and Gramnegative pathogens (Table 1 and Table 2). Of note, omadacycline showed good activity against the pathogens that are most commonly associated with ABSSSI and CABP including S. aureus, S. pyogenes, E. faecalis, S. pneumoniae, and H. influenzae. These results were similar to those of the SENTRY surveillance study that included isolates from China in that the MIC₅₀ and MIC₉₀ values were nearly identical for the key pathogens causing ABSSSI and CABP [22]. The fact that the isolates for the SENTRY study were collected in 2013 and the isolates examined in the present study were collected in 2017–2018 suggests that there has been no decrease in the overall susceptibility to omadacycline in the intervening time period. The results of this study also mirror studies performed with isolates from the USA and Europe, demonstrating that activity of omadacycline against pathogens causing ABSSSI and CABP is universal across the globe [3].

Of particular importance, omadacycline demonstrated good activity against S. aureus, including MRSA. Surveys have shown that almost 50% of hospital-associated infections caused by S. aureus in China were attributed to MRSA [23]. Furthermore, the incidence of nasal carriage of MRSA and community-associated (CA) infections caused by MRSA appears to be on the rise in China [24, 25]. Many of these CA-MRSA were found in skin and soft-tissue infections, an indication in which omadacycline has demonstrated clinical efficacy. Therefore, the option of an oral formulation of omadacycline could be beneficial in this setting. The high prevalence of MRSA in hospitals and communities has inevitably led to the increased use of glycopeptides and other anti-MRSA agents and have promoted the development of glycopeptide non-susceptible strains [23]. In this regard, omadacycline could be viewed as a glycopeptide-sparing agent.

In summary, this study confirmed the excellent in vitro activity of omadacycline against Chinese pathogens associated with ABBSSSI and CABP. This, coupled with the oral dosing option, makes omadacycline an attractive option for treatment of these infections in Chinese patients.

Code availability Not applicable.

Authors' contributions All authors made substantial contributions to the conception or design of the work.

Funding information This study was funded in part by National Megaproject for Innovative Drugs (2019ZX09721001-006-004) and CHINET Antimicrobial Surveillance Network (grant WI207259). It was also funded by Zai Laboratory Inc., Shanghai, China.

Data availability Data can be provided upon request.

Compliance with ethical standards

Conflict of interest Antimicrobial development specialists, LLC, was contracted to during 2019 to perform services for Boston Pharma, Carb-X, Colgate Palmolive, ContraFect Corp., Emergent Biosciences, Entasis Therapeutics, EXDA, Nabriva, NacuGen, Novartis, RecreoPharma, Sihuan Pharmaceutical, SuperTrans Medical, Tetraphase, Theravance, University of Waterloo, Wellcome Trust, X-Biotix, and Zai Labs.

Ethical approval This study was approved by the Institutional Review Board of Huashan Hospital, Fudan University (Number: 2018-349).

Consent to participate Not applicable.

References

- Karlowsky JA, Steenbergen J, Zhanel GG (2019) Microbiology and preclinical review of omadacycline. Clin Infect Dis 69(Supplement_1):S6-S15. https://doi.org/10.1093/cid/ciz395
- Heidrich CG, Mitova S, Schedlbauer A, Connell SR, Fucini P, Steenbergen JN, Berens C (2016) The novel aminomethylcycline omadacycline has high specificity for the primary tetracyclinebinding site on the bacterial ribosome. Antibiotics (Basel) 5(4). https://doi.org/10.3390/antibiotics5040032
- Huband MD, Pfaller MA, Shortridge D, Flamm RK (2019) Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: results from the SENTRY Antimicrobial Surveillance Programme, 2017. J Glob Antimicrob Resist 19:56–63. https://doi.org/10.1016/j.jgar.2019.02.017
- Stapert L, Wolfe C, Shinabarger D, Marra A, Pillar C (2018) In vitro activities of omadacycline and comparators against anaerobic bacteria. Antimicrob Agents Chemother 62(4). https://doi.org/10.1128/ aac.00047-18
- O'Riordan W, Green S, Overcash JS, Puljiz I, Metallidis S, Gardovskis J, Garrity-Ryan L, Das AF, Tzanis E, Eckburg PB, Manley A, Villano SA, Steenbergen JN, Loh E (2019) Omadacycline for acute bacterial skin and skin-structure infections. N Engl J Med 380(6):528–538. https://doi.org/10.1056/ NEJMoa1800170
- O'Riordan W, Cardenas C, Shin E, Sirbu A, Garrity-Ryan L, Das AF, Eckburg PB, Manley A, Steenbergen JN, Tzanis E, McGovern PC, Loh E (2019) Once-daily oral omadacycline versus twice-daily oral linezolid for acute bacterial skin and skin structure infections (OASIS-2): a phase 3, double-blind, multicentre, randomised, controlled, non-inferiority trial. Lancet Infect Dis 19(10):1080–1090. https://doi.org/10.1016/s1473-3099(19)30275-0
- Stets R, Popescu M, Gonong JR, Mitha I, Nseir W, Madej A, Kirsch C, Das AF, Garrity-Ryan L, Steenbergen JN, Manley A, Eckburg PB, Tzanis E, McGovern PC, Loh E (2019) Omadacycline for community-acquired bacterial pneumonia. N Engl J Med 380(6): 517–527. https://doi.org/10.1056/NEJMoa1800201
- Pfaller MA, Rhomberg PR, Huband MD, Flamm RK (2018) Activity of omadacycline tested against Enterobacteriaceae causing urinary tract infections from a global surveillance program (2014). Diagn Microbiol Infect Dis 91(2):179–183. https://doi.org/10. 1016/j.diagmicrobio.2018.01.019
- Pfaller MA, Rhomberg PR, Huband MD, Flamm RK (2018) Activity of omadacycline tested against *Streptococcus pneumoniae* from a global surveillance program (2014). Diagn Microbiol Infect Dis 90(2):143–147. https://doi.org/10.1016/j.diagmicrobio.2017. 10.010

- CLSI (2018) M07-A11 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Tenth edn. Clinical and Laboratory Standards Institute, Wayne
- CLSI (2020) M100-S30 Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, Wayne, PA
- Yin D, Wu S, Yang Y, Shi Q, Dong D, Zhu D, Hu F (2019) Results from the China Antimicrobial Surveillance Network (CHINET) in 2017 of the in vitro activities of ceftazidime-avibactam and ceftolozane-tazobactam against clinical isolates of Enterobacteriaceae and *Pseudomonas aeruginosa*. Antimicrob Agents Chemother 63(4):e02431-e02418. https://doi.org/10.1128/aac.02431-18
- Yezli S, Li H (2012) Antibiotic resistance amongst healthcareassociated pathogens in China. Int J Antimicrob Agents 40(5): 389–397. https://doi.org/10.1016/j.ijantimicag.2012.07.009
- Qiao M, Ying G-G, Singer AC, Zhu Y-G (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172. https://doi.org/10.1016/j.envint.2017.10.016
- Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L-F, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J-H, Shen J (2016) Emergence of plasmidmediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168. https://doi.org/10.1016/ S1473-3099(15)00424-7
- Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL (2015) Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol 49(11):6772– 6782. https://doi.org/10.1021/acs.est.5b00729
- Zhang R, Eggleston K, Rotimi V, Zeckhauser RJ (2006) Antibiotic resistance as a global threat: evidence from China, Kuwait and the United States. Glob Health 2(1):6. https://doi.org/10.1186/1744-8603-2-6
- Zhen X, Stålsby Lundborg C, Sun X, Hu X, Dong H (2019) The clinical and economic impact of antibiotic resistance in China: a systematic review and meta-analysis. Antibiotics 8(3):115. https:// doi.org/10.3390/antibiotics8030115

- Fluit AC, van Gorkum S, Vlooswijk J (2019) Minimal inhibitory concentration of omadacycline and doxycycline against bacterial isolates with known tetracycline resistance determinants. Diagn Microbiol Infect Dis 94(1):78–80. https://doi.org/10.1016/j. diagmicrobio.2018.11.010
- Macone AB, Caruso BK, Leahy RG, Donatelli J, Weir S, Draper MP, Tanaka SK, Levy SB (2014) In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother 58(2):1127–1135. https://doi.org/ 10.1128/aac.01242-13
- NUZYRA (omadacycline) prescribing information. (2019). https:// www.accessdata.fda.gov/drugsatfda_docs/label/2018/209816_ 209817lbl.pdf.
- Carvalhaes CG, Huband MD, Reinhart HH, Flamm RK, Sader HS (2019) Antimicrobial activity of omadacycline tested against clinical bacterial isolates from hospitals in Mainland China, Hong Kong, and Taiwan: results from the SENTRY Antimicrobial Surveillance Program (2013 to 2016). Antimicrob Agents Chemother 63(3): e02262–e02218. https://doi.org/10.1128/aac.02262-18
- Chen CJ, Huang YC (2014) New epidemiology of *Staphylococcus aureus* infection in Asia. Clin Microbiol Infect 20(7):605–623. https://doi.org/10.1111/1469-0691.12705
- Du J, Chen C, Ding B, Tu J, Qin Z, Parsons C, Salgado C, Cai Q, Song Y, Bao Q, Zhang L, Pan J, Wang L, Yu F (2011) Molecular characterization and antimicrobial susceptibility of nasal *Staphylococcus aureus* isolates from a Chinese medical college campus. PLoS One 6(11):e27328. https://doi.org/10.1371/journal. pone.0027328
- Wu D, Wang Q, Yang Y, Geng W, Wang Q, Yu S, Yao K, Yuan L, Shen X (2010) Epidemiology and molecular characteristics of community-associated methicillin-resistant and methicillinsusceptible *Staphylococcus aureus* from skin/soft tissue infections in a children's hospital in Beijing, China. Diagn Microbiol Infect Dis 67(1):1–8. https://doi.org/10.1016/j.diagmicrobio.2009.12.006

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

